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ABSTRACT

This paper presents the computational challenge on differential geometry and
topology that happened within the ICLR 2021 workshop “Geometric and Topolog-
ical Representation Learning”. The competition asked participants to provide cre-
ative contributions to the fields of computational geometry and topology through
the open-source repositories Geomstats and Giotto-TDA. The challenge at-
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tracted 16 teams in its two month duration. This paper describes the design of the
challenge and summarizes its main findings.
Code: https://github.com/geomstats/challenge-iclr-2021.

1 INTRODUCTION

The motivation behind the organization of the ICLR 2021 Computational Geometry and Topology
challenge was two-folds: first, to push forward the fields of computational differential geometry
and topology; and second, to foster reproducible research in mathematics by encouraging the use,
development and maintenance of open-source repositories.

Reproducible Research The reproducibility of a (computational) experiment is widely regarded
as a requirement to establish a scientific claim or to demonstrate the applicability of a technology.
Different authors have suggested different levels of reproducibility (Dalle, 2012; Stodden et al.,
2013; Schnell, 2018). These levels range from repeatability – the ability of the same team to repeat
the same experiment with the same methodological set up – to the stronger notion of reproducibility
– the ability of a different team to reproduce the results with a different methodological set up.
In computational and mathematical sciences, such “methodological setup” refers to the software
environment, the data, and raw code.

Despite many valuable initiatives to improve reproducibility in science, minimum standards are
rarely met – even in the mathematical sciences (David Redish et al., 2018). This so-called repro-
ducibility crisis has led researchers, funding agencies, politicians, and the wider audience to question
the reliability of the scientific enterprise. Among other attempts to address the crisis, the workshop
“ICERM Workshop on Reproducibility in Computational and Experimental Mathematics (2012)”
laid out several recommendations to the research community. In particular, the workshop commit-
tee claimed that “appropriate tools” should be taught as standard operating procedure in relation to
computational aspects of research (Stodden et al., 2013).

Computational notebooks What are today’s “appropriate tools” in modern computational and
mathematical sciences? The most commonly used tools may not be the most appropriate anymore.
The publication process has barely evolved since the 17th century, as the research paper (or its
electronic form) still represents the principal mean of diffusion for mathematical ideas. As James
Sommers writes: “Scientific results today are as often as not found with the help of computers. [...]
And yet by far the most popular tool we have for communicating these results is the PDF - literally
a simulation of a piece of paper. Maybe we can do better.”

Many new “appropriate tools” are available to mathematical sciences to go beyond the sole diffu-
sion format of the research paper. Among them, the computational notebook is an excellent candi-
date that can complement the traditional PDF paper (Oakes et al., 2019). Even a very theoretical
mathematical paper could be completed by a computational notebook, that would: (i) use symbolic
computation software to automatically check equations, (ii) leverage packages to check the veracity
of a theorem on specific examples, (iii) provide interactive visualizations of special cases for the
theoretical concepts exposed. This computational notebook could also be run automatically by the
editor board of the corresponding journal, hence relieving some aspects of the review process and
directly fostering reproducibility.

Open-source packages Computational notebooks would ideally heavily leverage a shared imple-
mentation of the core concepts of a given field of mathematics. This implementation would be ma-
terialized as a piece of open-source software, whose computations would be constantly checked by
its community. As such, well-maintained open-source software and computational notebooks repre-
sent the foundational “appropriate tools” that can foster reproducibility in mathematical research and
with it, improve the efficiency and reliability of the research enterprise. Many open-source packages
have made code available to foster reproducible research in their respective fields of mathematics.

In the field of differential geometry, we find Pygeometry (Censi, 2012), Manopt (Boumal et al.,
2013), Pyquaternion (Wynn, 2014), Pyriemann (Barachant, 2015), PyManopt (Townsend
et al., 2016), TheanoGeometry (Kühnel & Sommer, 2017), Geoopt (Kochurov et al., 2019),
Geomstats (Miolane et al., 2020), the SageManifold project within the package SageMath
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(Developers et al., 2020), Tensorflow Manopt (Smirnov, 2021), and JuliaManifolds
(Axen et al., 2021), among others. In the field of topology, we find Perseus (Nanda, 2012),
Dipha (Kerber et al., 2014), Javaplex (Tausz et al., 2014), TDA (Fasy et al., 2015), Dionysus
(Morozov, 2015), Eireen (Henselman & Ghrist, 2016), PHAT (Bauer et al., 2017), the Topol-
ogy ToolKit TTK (Tierny et al., 2018), RedHom (Brendel et al., 2019), Scikit-tda (Saul &
Tralie, 2019), Giotto-TDA (Tauzin et al., 2020), HomCloud (Obayashi et al., 2020), Diamorse
(Robins & Delgado-Friedrichs, 2020), Gudhi (The GUDHI Project, 2021), GDA-public (Geom-
Data, 2021), and Ripser (Bauer, 2021), to cite a few.

Despite the existence of these packages, computational notebooks do not always accompany the
submission of a mathematical research paper. Furthermore, recruiting maintainers to ensure the
validity of the code on these platforms is often difficult. Both issues can be explained by a lack of
incentives in the associated scientific communities.

Incentives Computational notebooks and open-source software – such as the ones referenced in
the previous paragraph – are gaining popularity in several fields of research, for example within
machine learning communities. However, they might be still under-used in the mathematical sci-
ences for three main reasons. First, traditional mathematical training rarely introduce notebooks and
software engineering as part of the curriculum. In differential geometry for example, textbooks may
lack coding exercises or an associated interactive library. As a result, mathematicians do not neces-
sarily master the tools available to use or write code associated with their findings. Second, many
fields of mathematics lack a reference platform, such as a designated software, where researchers
can share their computations and together contribute to their field. Third, there are only few in-
centives that motivate junior researchers in the mathematical sciences to learn good practices. The
“publish-or-perish” pressure can make it difficult for junior researchers to consider taking additional
time to (learn to) implement and share their results. As a consequence, and specifically in differen-
tial geometry and topology, it can be challenging to reproduce results, even if they were produced
by the same team.

Computational Geometry and Topology Challenge The ICLR 2021 Computational Geometry
and Topology Challenge aimed to address these issues by encouraging researchers to delve into
open-source implementations of differential geometry and topology. The participants were asked to
create computational notebooks using the open-source software Geomstats (Miolane et al., 2020)
and Giotto-TDA (Tauzin et al., 2020). The goal was to showcase some of the aforementioned
“appropriate tools” for modern research in the mathematical sciences. The participants of the chal-
lenge were rewarded by the publication of the present paper and with prizes for the three winning
teams.

Outline and contributions The remainder of this paper is organized as follows. Section 2 in-
troduces the setup and guidelines of the challenge. Section 3 summarizes the submissions to
the challenge. Section 4 presents the main features used by the participants within the packages
Geomstats and Giotto-TDA. Section 5 presents the limitations of the packages as reported by
the participants. Section 6 provides a list of new features proposed by the participants that aim to
enhance current implementations of computational geometry and topology. Section 7 describes the
challenge’s evaluation process and gives the final ranking of the submissions to the challenge.

2 SETUP OF THE CHALLENGE

The challenge was held in conjunction with the workshop “Geometric and Topological Representa-
tion Learning” of the International Conference on Learning Representations (ICLR) 2021.

Guidelines The participants were asked to submit a Jupyter Notebook to provide “the best
data analysis, computational method, or numerical experiment relying on state-of-the-art geometric
and topological Python packages”: Geomstats and Giotto-TDA. The participants submitted
their Jupyter Notebooks via Pull Requests (PR) to the GitHub repository of the challenge 1.
Teams were accepted and there was no restriction on the number of team members. The current

1https://github.com/geomstats/challenge-iclr-2021
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principal developers of Geomstats and Giotto-TDA, i.e. the co-authors of the published papers
(Miolane et al., 2020; Tauzin et al., 2020), were not allowed to participate.

Each submission was requested to respect the following structure: (i) Introduction and motivation,
(ii) Analysis/Experiment, (iii) Benchmark, (iv) Limitations and perspectives. Guidelines were also
giving examples of possible submissions:

• Data analysis with geometric and topological methods,
• Implementation of a research paper with Geomstats/Giotto-TDA
• Implementation of a feature to merge into Geomstats/Giotto-TDA codebases,
• Implementation of visualization tools for Geomstats/Giotto-TDA,
• Benchmarking/profiling on geometric and topological methods against other methods for a

public dataset.

This list was completed by the submission-example-* folders on the GitHub repository, to
help participants understand the packages and design their submission.

Evaluation criterion: fostering creativity The evaluation criterion was: “how does the submis-
sion help push forward the fields of computational geometry and topology?”. The submissions were
ranked according to this evaluation criterion, through a voting procedure relying on the Condorcet
method, see Section 7.

The choice of this evaluation criterion was motivated by several reasons. First, the criterion did not
require participants to submit novel research. The main focus was the implementation, which could
for instance be the reproduction of published research. Such a criterion can allow the participants to
focus on producing clean code and to provide a hands-on explanation of the mathematical concepts
at hand.

This criterion also did not bias participants towards showcasing “positive results” such as a new
method beating the state of the art. “Negative results” were considered just as valuable as positive
results. In particular, submissions criticizing the available packages, or showing examples where
geometric and topological representations did not help the analysis were also significantly rewarded.

Lastly, such criterion encouraged participants to be generally creative. Most machine learning chal-
lenges are conducted by ranking the participants according to a quantitative metric on a test dataset.
This can induce biases in the contributions of the participants, since methods that do not perform
on that specific metric are not rewarded. While they have many other advantages, such criteria may
hide interesting research. In contrast, our evaluation criterion, relying on a voting system through
the Condorcet method, was meant to also reward creative submissions.

Software engineering practices The participants were also encouraged to use software engineer-
ing best practices. Their code should be compatible with Python 3.8 and make an effort to respect
the Python style guide PEP8. The Jupyter notebooks were automatically tested when a Pull
Request was submitted and the tests were required to pass. If a dataset was used, the dataset had to
be public and referenced. Participants could raise GitHub issues and/or request help or guidance at
any time through Geomstats slack and Giotto-TDA slack. The help/guidance was be provided
modulo availability of the maintainers.

3 SUBMISSIONS TO THE CHALLENGE

Sixteen teams submitted code before the deadline and participated in the challenge. This section
provides a summary of their submissions.

Noise Invariant Topological Features This submission analyzes data topological structure whilst
being robust to various data corruptions. Examples of perturbed data are noisy point clouds, pho-
tos taken from different views, or dynamic modeling. This submission showcases the pipeline for
extracting Perturbed Topological Signatures (PTS) by using Geomstats and Giotto-TDA (Som
et al., 2018). The topological properties are studied by using distance metrics and kernels defined
on the Stiefel and Grassmann manifolds (Edelman et al., 1999; Hamm & Lee, 2009; Som et al.,
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2018). Experiments are performed on three datasets: SHREC 2010 (Veltkamp et al., 2010), Prince-
ton COS429 (COS429, 2009), and MNIST (LeCun et al., 2010).

Estimators of Means of Symmetric Positive Matrices This submission investigates estimators
of means of Symmetric Positive Definite (SPD) matrices. In the first notebook, the efficiency of the
recursive estimation of the Karcher mean (Ho et al., 2013), and of the K-means algorithm relying on
it, are benchmarked and improved. In the second notebook, the Shrinkage Estimator is implemented
(Yang et al., 2020), and the notebook shows how it improves on the maximum likelihood estimator.
Experiments rely on synthetic datasets on the manifold of SPD matrices using sampling methods on
manifolds (Schwartzman, 2016).

Visualization of Kendall Shape Spaces for Triangles This submission introduces visualization
methods for Kendall shape spaces of triangles. An object’s shape can be described by locating rele-
vant points on it, called landmarks (Dryden & Mardia, 2016). The Kendall shape space of triangles
in dimension m = 2, 3 is the space of triangles quotiented by the group of rotations, translations
and dilatations of Rm (Kendall, 1984; Le & Kendall, 1993). This submission presents two new vi-
sualization methods of these Kendall shape spaces, demonstrates their use and compares them with
an alternative visualization method for this dataset: the non-exact visualization of multidimensional
scaling (MDS). The experiments are performed on synthetic data of triangles in Rm for m = 2, 3,
and on the dataset of optic nerve heads shapes from Geomstats’ datasets module.

Map your Topology to Different Geometries This submission implements a method to map a set
of points from one geometry of choice onto another while preserving the topology. In the context of
this notebook, a “geometry” refers to a Riemannian manifold such as Euclidean space, Hyperbolic
space, Hypersphere, manifold of Symmetric Positive Definite (SPD) matrices, among others. The
method uses gradient descent on Riemannian manifolds with a loss function introduced in (Moor
et al., 2020) that has been used in Deep Learning (Moor et al., 2020; Gabrielsson et al., 2020).
Experiments are run on synthetic data generated on the Euclidean plane, the sphere and the Poincare
ball.

Naive Image Anomaly Detection on Fashion MNIST This submission evaluates the possibility
to achieve anomaly detection (AD) in image databases with naive distances to centroids and norms
using Euclidean and Riemannian representations. The notebook considers simple AD setups where
the objective is to discriminate between two classes of the Fashion MNIST dataset (Xiao et al.,
2017). A general approach to embed images into the space of covariance matrices is introduced
based on (Calvo & Oller, 1990). The best performances are achieved by the method relying on the
norm of the negated geodesic principal component analysis (PCA) with the Fréchet mean as PCA
base point (Rippel et al., 2020), using the Log-Euclidean Riemannian metric.

Shape Analysis of Bone Cancer Cells This submission studies osteosarcoma (bone cancer)
cells and the impact of drug treatment on their morphological shapes. The analysis uses cell im-
ages obtained from fluorescence microscopy. The corresponding dataset has been added into the
Geomstats’ module datasets by the participants. Cell shapes are modelled as discrete (open)
curves. The submission uses the Riemannian elastic metric on discrete curves to compare cell shapes
(Jermyn et al., 2011). The biological assumption is that such measures of irregularity and spreading
of cells allow accurate classification and discrimination between cancer cell lines treated with dif-
ferent drugs (Elaheh et al., 2019). The submission studies to which extent this Riemannian metric
can detect how the cell shape is associated with the response to treatment.

Repurposing Peptide Inhibitors for SARS-Cov-2 Spike Protein This submission develops an
approach combining physico-chemical parameter analysis and topological featurization to train ro-
bust one-class classifiers to predict protein-protein interactions (PPIs). PPIs form the molecular
basis of processes that equally sustain life and drive development of disease, such as SARS-Cov-2.
Peptides have garnered therapeutic interest due to their potential to disrupt clinically-relevant PPIs,
apart from synthetic accessibility and better targeting modalities (Tsomaia, 2015; Mohapatra et al.,
2020; Schissel et al., 2020). The submission uses the top-performing model to screen the peptides
in the current dataset against SARS-Cov-2 receptor binding domain protein. The Peptide Binding
DataBase (PepBDB) is used for model training (Wen et al., 2018).
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Shape analysis with skeletal models and Principal Nested Spheres This submission consid-
ers anatomical shape analysis with skeletal representations (s-reps) (Liu et al., 2021) and Principal
Nested Spheres (PNS) (Jung et al., 2012; Kim et al., 2020). The s-rep of a given shape consists of
the shape’s skeleton and two functions defined on the skeleton: a radial vector field and a radius
function. PNS is a manifold learning method that addresses the non-Euclidean properties of shape
data. PNS fits a hierarchy of submanifolds – subspheres – to some input data. The notebook applies
this method to s-reps of toy data and to the classification problem of the hand skeleton shape dataset
available in Geomstats’ datasets module, comparing s-reps and PNS to Euclidean and Rie-
mannian alternatives from the literature. The best classification performance is obtained by using
the Kendall Riemmanian metric (Le & Kendall, 1993) on the hand skeleton shapes.

Riemannian mean-shift algorithm This submission implements a Riemannian version of the
mean-shift algorithm (Subbarao & Meer, 2009; Caseiro et al., 2012). Classic (Euclidean) mean shift
works by sliding a window (a ball whose radius is called “bandwidth”) over the dataset, iteratively
adjusting the center of the window until convergence to the estimated mode of the data. Mean shift
is used for clustering, with several advantages over K-means. This notebook implements the method
and shows its applicability on toy datasets on the sphere and hyperbolic plane.

Intrinsic Disease Maps Using Persistent Cohomology This submission uses persistent cohomol-
ogy to investigate and visualize two infectious disease progression datasets: physiological data on
Malaria in mice (Cumnock et al., 2018) and humans (Torres et al., 2016), and data on Hepatitis C
in humans (Rosenberg et al., 2018). The submission reiterates the work of (Daniel Amin, 2021) and
computes circular coordinates using the methodology introduced in (de Silva & Vejdemo-Johansson,
2009). The generated circular coordinate function provides an intrinsic disease phase coordinate that
maps out the disease progression in the full data space.

Neural Sequence Distance Embeddings This submission presents Neural Sequence Distance
Embeddings (NeuroSEED), a general framework to embed biological sequences in geometric vec-
tor spaces that reflect their evolutionary distance. The notebook illustrates the effectiveness of the
hyperbolic space that captures the hierarchical structure and provides an average 38% reduction in
embedding RMSE against the best competing geometry. The capacity of the framework and the
significance of these improvements are then demonstrated devising supervised and unsupervised
NeuroSEED approaches to multiple core tasks in bioinformatics. Benchmarked with common
baselines, the proposed approaches display significant accuracy and/or runtime improvements on
real-world datasets (Clemente et al., 2015; Zheng et al., 2019).

Analyzing Representative Cycles for Persistent Homology This submission aims to simplify
the use of cycles for the analysis of persistent homology. The persistence diagram is often the only
representation that software packages for TDA provide to visualize persistent homology informa-
tion. Visualizing where each homology class appeared in the domain space can be very challenging
for a user. This submission provides a collection of functions to simplify the interactive visualiza-
tion and analysis of the homology class by enriching the information contained in the persistence
diagram with cycles. Cycles are computed with an external library Iuricich (2020) which uses Dis-
crete Morse theory Robins et al. (2011); Mischaikow & Nanda (2013) to achieve scalability. The
notebook demonstrates the use of cycles on a subset of the MNIST dataset (LeCun et al., 2010) and
provides an overview of applications using the direct visualization of cycles for exploratory data
analysis.

Investigating CNN weights with Giotto Vectorization This submission provides a topological
analysis of convolutional neural networks (CNN) weights. Transforming each layer to a new auxil-
iary space predicts network properties on a non-trivial supervised classification task. The notebook
uses the Small CNN Zoo dataset (Unterthiner et al., 2021), shows how to compute the persistence
diagrams of the auxiliary space, vectorizes the diagrams into Silhouettes (Chazal et al., 2014), and fi-
nally runs several regression and classification experiments. The results are particularly encouraging
in terms of anomaly detection.

Brain Connectomes Comparison using Geodesic Distances This submission investigates the
performance of geodesic distances on manifolds to assess brain connectome similarity between pairs
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of twins in terms of their structural networks at different network resolutions. The notebook uses
the brain structural connectomes of 412 human subjects in five different resolutions and two edge
weights (Kerepesi et al., 2016). The notebook investigates the performance of geodesic distances on
manifolds and compares them with Euclidean distances within a Wilcoxon rank sum non-parametric
test (Cuzick, 1985).

Fuzzy c-Means Clustering for Persistence Diagrams and Riemannian Manifolds This sub-
mission implements Fuzzy c-Means clustering for persistence diagrams and Riemannian manifolds
(Davies et al., 2020). Many real world problems are fuzzy; that is, data points can have partial
membership to several clusters, rather than a single “hard” labelling to only one cluster (Campello,
2007). The notebook describes the fuzzy c-means algorithm, highlights the convergence results, and
demonstrates fuzzy clustering on two simple datasets.

Reweighting Vectors for Graph Convolutional Neural Networks via Poincaré Embedding and
Persistence Images This submission demonstrates how to incorporate local graph topological
properties (e.g. connected components, cycles) into persistence enhanced graph neural networks
(GNN) (Zhao et al., 2020) for graph and node classification tasks. The notebook converts un-
weighted graphs to weighted graphs by embedding them using the Poincaré ball model and using the
resulting Riemannian distances as the weights. Then, the persistence images of resulting weighted
graphs are computed and the resulting matrix is used to re-weight the GNN weights for enhanced
performances.

4 FEATURES USED IN THE PACKAGES

This section presents the features used in both packages and the limitations outlined by the partici-
pants. The numbers in parentheses refer to the number of submissions in which a given feature has
been used.

Features used in Geomstats The differential geometric structures used in the
submissions are the following: Hypersphere (×4), Kendall’s PreShapeSpace
(×3) with associated KendallShapeMetric (×3), the space of symmetric posi-
tive definite matrices SPDMatrices (×2) with associated Bures-Wasserstein metric
SPDMetricBuresWasserstein (×2), or alternative Riemannian metrics such as the
SPDMetricAffine (×1) and the SPDMetricLogEuclidean (×1), the Lie group
of rotations SpecialOrthogonal (×2), the hyperbolic space in its PoincareBall
(×2) representation and associated PoincareBallMetric (×1), the space of Matrices
(×1), the general class of RiemannianMetric (×1), the manifold of DiscreteCurves
(×1) with associated square-root velocity metric SRVMetric (×1), the Grassmanian
(×1) with the GrassmanianCanonicalMetric (×1), Stiefel (×1) with the
StiefelCanonicalMetric (×1). The algorithms of geometric statistics that have been
used are: the estimation of the FrechetMean (×6), the tangent principal component analysis
TangentPCA (×3), the RiemannianKMeans and the Riemannian version of the KNearest
NeighbordsClassifier. In terms of differential geometric datasets, the cell shapes dataset,
hand skeleton shape dataset and the optical nerve shape dataset were used. The visualization
module was also used through its Sphere (×3), PoincareDisk (×2), KendallDisk (×1),
KendallSphere (×1). The main features that have not been used are the mathematical structures
and functions related to information geometry, such as the manifolds of Beta distributions, Dirichlet
distributions and Normal distributions; and the more involved learning procedures such as the
expectation maximization or the KalmanFilter on Lie groups.

Features used in Giotto-TDA The topological features used in the submissions are the fol-
lowing. VietorisRipsPersistence (×6) was the most used class for computing persistent
homology, followed by CubicalPersistence (×1). In the diagrams module, the computa-
tion of distance matrices between persistence diagrams via PairwiseDistance (×3) was used
but not preferred to the vectorisation of persistence diagrams via PersistenceImage (×2),
PersistenceEntropy (×1), NumberOfPoints (×1), Amplitude (×1) and Silhouette
(×1). Additionally, Scaler (×1), from the same module, was used. A few pre-processing utilities
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for images were explored, namely Binarizer (×2) and the following classes for creating filtra-
tions from 2D or 3D greyscale images: RadialFiltration (×2), DilationFiltration
(×1), ErosionFiltration (×1) and DensityFiltration (×1). The visualization module
plotting was used through its functions plot diagram (×3) and plot point cloud (×2).
Among the main modules that have not been used, we find the modules related to time-series and
curves.

5 LIMITATIONS OF THE PACKAGES

Participants were asked to report on the limitations of the packages. This section provides a summary
of their findings.

Limitations of Geomstats First, some participants reported bugs. For example, there
was an issue to project points from the Grassmannian or the Stiefel manifold to the
tangent space using default canonical metrics or the participants’ custom metrics. Both
preprocessing.ToTangentSpace and Grassmannian.to tangent failed with the
same issue. A similar problem was encountered while trying to project points from the manifold
of DiscreteCurves on its tangent space at the FrechetMean using the square-root velocity
metric SRVMetric. In this case, the implementation of the FrechetMean itself was failing.

Second, participants did not find some implementations in the package or struggled to understand
the existing code. For example, a participant reported that the metric for the HyperbolicSpace
was missing, and another tried to use the abstract class RiemannianMetric without pro-
viding a definition of inner-product or a metric matrix. Another participant would have liked
to use product manifold and product metrics but did not realize that it was implemented
in the library. Other participants wanted to use several backends but could not find the
way to use both in one script: os.environ["GEOMSTATS BACKEND"] = "pytorch";
importlib.reload(geomstats.backend).

These issues come from a lack of completeness of the current documentation of the package, mis-
leading error messages and possible erroneous existing documentation. Other participants did report
several problems with the current documentation, which could be improved with more detailed de-
scriptions and an index with short summaries. There are classes such as the PoincareBall that
are found in tutorials, but not found in the documentation website.

Lastly, participants reported the lack of integration between the modules related to graph and hyper-
bolic spaces in Geomstats, and the formalism of modern libraries using graphs. In this case, a
refactoring is needed to allow a better integration between geometric statistics through Geomstats
and packages of geometric learning such as pytorch-geometric (Fey & Lenssen, 2019),
networkx (Hagberg et al., 2008) and dgl (Wang et al., 2019).

Limitations of Giotto-TDA First, some participants reported bugs. For example, computing
persistence images on persistence diagrams formed by a single persistence pair outputs an empty
persistence image.

Some participants pointed out that the rigid input requirements for PairwiseDistance – in par-
ticular, the fact that all persistence diagrams must formally have the same number of homology
dimensions and of birth-death pairs in each homology dimension – can be limiting in applications.
This indicates that a utility function for converting collections of persistence diagrams into a for-
mat accepted by PairwiseDistance should be added to the package. Possibly related to this,
some participants surmised (incorrectly, in this case) that persistent homology transformers such as
VietorisRipsPersistence cannot handle collections of point clouds of different cardinali-
ties. This might indicate that the aforementioned tight requirements in PairwiseDistance are
at odds with the more permissive character of many other components of Giotto-tda.

The next reported limitation came from the architecture of the package itself. Some partici-
pants reported that the package’s high-level API did not allow for manipulations of attributes
and usage of methods that are present in the objects that it runs underneath. For example,
VietorisRipsPersistence runs using Ripser but does not allow one to access the co-
cycles that are otherwise accessible using Ripser’s API directly.
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Lastly, in terms of performance, some participants reported that the computational runtime for
PersistenceImage was very irregular on their data in comparison to the performance of e.g.
Silhouette.

6 PROPOSED FEATURES FOR THE PACKAGES

This section lists the features, suggested by the participants, that could be implemented in packages
of computational geometry and topology such as Geomstats and Giotto-TDA. These are im-
plementations that they would judge useful in order to push forwards the fields of computational
geometry and topology.

Proposed features for Geomstats As the Stiefel and the Grassmann manifolds are becoming
popular in the Machine Learning and Computer Vision community, more geometric features on
these manifolds (such as various metrics) could offer powerful tools for solving a wide range of
learning tasks.

In the same vein, symmetric positive definite (SPD) matrices are raising more and more interest
in the same communities. While Geomstats has a module that processes time-series into SPD
matrices, further SPD-dedicated preprocessing to SPD matrices for various data types would be
helpful. Trainable SPD representations would also be of interest. For instance, some participants
specifically asked for an implementation of SPD neural networks, the so-called second order neural
networks.

Then, the module on the geometry of discrete curves could be improved in different ways.
Geomstats only provides spaces of open curves, a restriction which is also not necessarily clear
through reading the documentation only. Adding the implementation of the space of closed curves
would be interesting. Furthermore, only the elastic metric on these spaces of curves is implemented,
while generalizations of this metric exist that could be interesting. We note that these last two struc-
tures have been implemented in the library since. Lastly, when looking at shapes of curves, it is
interesting to quotient out not only the reparameterization of the curve (done with the elastic met-
ric), but also the rotations and translations of these curves. This is not obvious from the current
documentation, and indications of this aspect, together with a recommendation to use the module of
Kendall shape space for this, could be helpful.

Lastly, the visualization module could be further improved, by allowing more interactive visual-
izations and adding a visualization for the space of SPD matrices that could allow to visualize the
differences between the different metrics on SPD matrices (of low dimensions).

Proposed features for Giotto-TDA First, participants suggested to add an implementation that
computes the pairwise distance matrix of diagrams with different number of homology groups in
each dimension, without having to first perform some laborious manual padding. Some partici-
pants also offered to add tools to compute the cohomology persistence, and for example circular
coordinates.

For machine learning applications, some participants suggested to use a tensor backend instead of
NumPy, such as Tensorflow or PyTorch.

7 FINAL RANKING

This section provides the final ranking of the challenge’s submissions. The Condorcet method was
used to rank the submissions based on the single evaluation criterion: “how does the submission
help push forward the fields of computational geometry and topology?”

Each of the 16 teams had the opportunity to vote for the 3 best submissions. Each team received
only one vote, even if there were several participants in the team. In addition, 8 external reviewers,
chosen among Geomstats and Giotto-TDA core maintainers and all from different institutions,
also voted for the 3 best submissions. The 3 preferences had to be all 3 be different: e.g. one could
not select the same Jupyter Notebook for both first and second place. The submissions were
anonymized, the votes remained secret, only the final ranking is published here. Ties are represented
by bullet points in the ranking below.
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1. Noise Invariant topological features
2. • Estimators of Means of Symmetric Positive Matrices

• Visualization of Kendall Shape Spaces for Triangles
3. Neural Sequence Distance Embeddings
4. Repurposing Peptide Inhibitors for SARS-Cov-2 Spike Protein
5. • Map your Topology to Different Geometries

• Intrinsic Disease Maps Using Persistent Cohomology
6. Shape analysis with skeletal models and Principal Nested Spheres
7. • Riemannian mean-shift algorithm

• Fuzzy c-Means Clustering for Persistence Diagrams and Riemannian Manifolds
8. • Naive Image Anomaly Detection on Fashion MNIST

• Shape Analysis of Bone Cancer Cells
• Brain Connectomes Comparison using Geodesic Distances
• Investigating CNN weights with Giotto Vectorization

9. Analyzing Representative Cycles for Persistent Homology
10. Reweighting Vectors for Graph Convolutional Neural Networks via Poincaré Embedding

and Persistence Images

Regardless of this final ranking, we would like to stress that all the submissions were of very high
quality. We warmly congratulate all the participants.
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8 CONCLUSION

This white paper presented the motivations behind the organization of the “Computational Geomet-
ric and Topological Challenge” at the ICLR 2021 workshop “Geometric and Topological Represen-
tation Learning”, and summarized the findings from the participants’ submissions.
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